#925. 寂寞的数

寂寞的数

说明

算法训练  寂寞的数   
时间限制:1.0s     内存限制:256.0MB
     
问题描述
  道德经曰:一生二,二生三,三生万物。
  对于任意正整数n,我们定义d(n)的值为为n加上组成n的各个数字的和。例如,d(23)=23+2+3=28,  d(1481)=1481+1+4+8+1=1495。
  因此,给定了任意一个n作为起点,你可以构造如下一个递增序列:n,d(n),d(d(n)),d(d(d(n)))....例如,从33开始的递增序列为:
  33,  39,  51,  57,  69,  84,  96,  111,  114,  120,  123,  129,  141,  ...
  我们把n叫做d(n)的生成元,在上面的数列中,33是39的生成元,39是51的生成元,等等。有一些数字甚至可以有两个生成元,比如101,可以由91和100生成。但也有一些数字没有任何生成元,如42。我们把这样的数字称为寂寞的数字。
输入格式
  一行,一个正整数n。
输出格式
  按照升序输出小于n的所有寂寞的数字,每行一个。
样例输入
40
样例输出
1
3
5
7
9
20
31
数据规模和约定
  n< =10000