#974. 邮票

邮票

说明

算法训练  邮票   
时间限制:1.0s     内存限制:512.0MB
     
问题描述
  给定一个信封,有N(1≤N≤100)个位置可以贴邮票,每个位置只能贴一张邮票。我们现在有M(M< =100)种不同邮资的邮票,面值为X1,X2….Xm分(Xi是整数,1≤Xi≤255),每种都有N张。

  显然,信封上能贴的邮资最小值是min(X1,  X2,  …,  Xm),最大值是  N*max(X1,  X2,  …,  Xm)。由所有贴法得到的邮资值可形成一个集合(集合中没有重复数值),要求求出这个集合中是否存在从1到某个值的连续邮资序列,输出这个序列的  最大值。

  例如,N=4,M=2,面值分别为4分,1分,于是形成1,2,3,4,5,6,7,8,9,10,12,13,16的序列,而从1开始的连续邮资序列为1,2,3,4,5,6,7,8,9,10,所以连续邮资序列的最大值为10分。
输入格式
  第一行:最多允许粘贴的邮票张数N;第二行:邮票种数M;第三行:空格隔开的M个数字,表示邮票的面值Xi。注意:Xi序列不一定是大小有序的!
输出格式
  从1开始的连续邮资序列的最大值MAX。若不存在从1分开始的序列(即输入的邮票中没有1分面额的邮票),则输出0.
样例输入
样例一:
4
2
4  1
样例二:
10
5
2  4  6  8  10

样例输出
样例一:
10
样例二:
0